理想数、簇与算法 第2版 Cox,D.等著 2004年版
- 文件大小:21.94 MB
- 标准类型:数学书籍
- 标准语言:英文版
- 文件类型:PDF文档
- 更新时间:2023-10-27
- 下载次数:
- 标签:
资料介绍
理想数、簇与算法 第2版
作者:Cox,D.等著
出版时间:2004年版
内容简介
We wrote this book to introduce undergraduates to some interesting ideas in algebraic geometry and commutative algebra。 Until recently,these topics involved a lot of abstract mathematics and were only taught in graduate school。 But in the 1960s,Buchberger and Hironaka discovered new algorithms for manipulating systems of polynomial equations。 Fueled by the development of computers fast enough to run these algorithms,the last two decades have seen a minor revolution in commutative algebra。 The ability to compute efficiently with polynomial equations has made it possible to investigate complicated examples that would be impossible to do by hand,and has changed the practice of much research in algebraic geometry。 This has also enhanced the importance of the subject for computer scientists and engineers,who have begun to use these techniques in a whole range of problems。
目录
PrefacetotheFirstEdition
PrefacetotheSecondEdition
1. Geometry,cAlgebra,candAlgorithms
1. PolynomialsandAffineSpace
2. AffineVarieties
3. ParametrizationsofAffineVarieties
4. Ideals
5. PolynomialsofOneVariable
2. GroebnerBases
1. Introduction
2. OrderingscontheMonomialsink[x1. ,....,xn]
3. ADivisionAlgorithmink[x1. ,....,xn]
4. MonomialIdealsandDickson'scLemma
5. TheHilbertBasisTheoremandGroebnerBases
6. .PropertiesofGroebnerBases
7..Buchberger'scAlgorithm
8. .FirstApplicationsofGroebnerBases
9.(Optional)ImprovementsonBuchberger'scAlgorithm
3. EliminationTheory
1. TheEliminationandExtensionTheorems
2. TheGeometryofElimination
3. Implicitization
4. SingularPointsandEnvelopes
5. UniqueFactorizationandResultants
6. ResultantsandtheExtensionTheorem
4. TheAlgebra-GeometryDictionary
1. Hilbert'sNullstellensatz
2. RadicalIdealscandtheIdeal-VarietyCorrespondence
3. Sums,cProducts,candIntersetionscofIdeals
4. ZariskiClosureandQuotientscofIdeals
5. IrreducibleVarietiesandPrimeIdeals
6. DecompositionofaVarietycintoIrreducibles
7.(Optional)PrimaryDecompositionofIdeals
8. Summary
5. PolynomialandRationalFunctionsonaVariety
1. PolynomialMappings
2. QuotientsofPolynomialRings
3. AlgorithmicComputationscink[x1. ,....,xn]I
4. TheCoordinateRingofanAffineVariety
5. RationalFunctionsconcaVariety
6. (Optional)ProofcoftheClosureTheorem
6. RoboticsandAutomaticGeometricTheoremProving
1. GeometricDescriptionofRobots
2. TheForwardKinematicProblem
3. TheInverseKinematicProblemandMotionPlanning
4. AutomaticGeometricTheoremProving
5. Wu'sMetho
7.InvariantTheoryofFiniteGroups
1. SymmetricPolynomials
2. FiniteMatrixGroupsandRingsofInvariants
3. GeneratorsfortheRingofInvariants
4. RelationsAmongGeneratorsandtheGeometryofOrbits
8. ProjectiveAlgebraicGeometry
1. TheProjetivePlane
2. ProjectiveSpaceandProjectiveVarieties
3. TheProjectiveAlgebra-GeometryDictionary
4. TheProjectiveClosureofanAffineVariety
5. ProjectiveEliminationTheory
6. TheGeometryofQuadricHypersuffaces
7. Bezout'sTheorem
9.TheDimensionofaVariety
1. TheVarietyofaMonomialIdea
2. heComplementofaMonomialIdeal
3. TheHilbertFunctionandtheDimensionofaVariety
4. ElementarycPropertiescofcDimension
5. DimensionandAlgebraicIndependence
6. DimensionandNonsingularity
7. TheTangentCone
AppendixA.SomeConceptscfromAlgebra
1. FieldsandRings
2. Groups
3. Determinants
AppendixB.Pseudocode
1. Inputs,Outputs,Variables,andConstants
2. AssignmentStatements
3. LoopingStructures
4. BranchingStructures
AppendixC.ComputerAlgebraSystems
1. AXIOM
2. Maple
3. Mathematica
4. REDUCE
5. OthercSystems
AppendixcD.cIndependentcProjects
1. GeneralcComments
2. SuggestedcProjects
References
Index上一篇:确定性问题数学和摄动理论及其应用 下 朱月锐编 1982年版
下一篇:乐学七中 高中数学 必修2 廖学军,祁祖海主编 2014年版
作者:Cox,D.等著
出版时间:2004年版
内容简介
We wrote this book to introduce undergraduates to some interesting ideas in algebraic geometry and commutative algebra。 Until recently,these topics involved a lot of abstract mathematics and were only taught in graduate school。 But in the 1960s,Buchberger and Hironaka discovered new algorithms for manipulating systems of polynomial equations。 Fueled by the development of computers fast enough to run these algorithms,the last two decades have seen a minor revolution in commutative algebra。 The ability to compute efficiently with polynomial equations has made it possible to investigate complicated examples that would be impossible to do by hand,and has changed the practice of much research in algebraic geometry。 This has also enhanced the importance of the subject for computer scientists and engineers,who have begun to use these techniques in a whole range of problems。
目录
PrefacetotheFirstEdition
PrefacetotheSecondEdition
1. Geometry,cAlgebra,candAlgorithms
1. PolynomialsandAffineSpace
2. AffineVarieties
3. ParametrizationsofAffineVarieties
4. Ideals
5. PolynomialsofOneVariable
2. GroebnerBases
1. Introduction
2. OrderingscontheMonomialsink[x1. ,....,xn]
3. ADivisionAlgorithmink[x1. ,....,xn]
4. MonomialIdealsandDickson'scLemma
5. TheHilbertBasisTheoremandGroebnerBases
6. .PropertiesofGroebnerBases
7..Buchberger'scAlgorithm
8. .FirstApplicationsofGroebnerBases
9.(Optional)ImprovementsonBuchberger'scAlgorithm
3. EliminationTheory
1. TheEliminationandExtensionTheorems
2. TheGeometryofElimination
3. Implicitization
4. SingularPointsandEnvelopes
5. UniqueFactorizationandResultants
6. ResultantsandtheExtensionTheorem
4. TheAlgebra-GeometryDictionary
1. Hilbert'sNullstellensatz
2. RadicalIdealscandtheIdeal-VarietyCorrespondence
3. Sums,cProducts,candIntersetionscofIdeals
4. ZariskiClosureandQuotientscofIdeals
5. IrreducibleVarietiesandPrimeIdeals
6. DecompositionofaVarietycintoIrreducibles
7.(Optional)PrimaryDecompositionofIdeals
8. Summary
5. PolynomialandRationalFunctionsonaVariety
1. PolynomialMappings
2. QuotientsofPolynomialRings
3. AlgorithmicComputationscink[x1. ,....,xn]I
4. TheCoordinateRingofanAffineVariety
5. RationalFunctionsconcaVariety
6. (Optional)ProofcoftheClosureTheorem
6. RoboticsandAutomaticGeometricTheoremProving
1. GeometricDescriptionofRobots
2. TheForwardKinematicProblem
3. TheInverseKinematicProblemandMotionPlanning
4. AutomaticGeometricTheoremProving
5. Wu'sMetho
7.InvariantTheoryofFiniteGroups
1. SymmetricPolynomials
2. FiniteMatrixGroupsandRingsofInvariants
3. GeneratorsfortheRingofInvariants
4. RelationsAmongGeneratorsandtheGeometryofOrbits
8. ProjectiveAlgebraicGeometry
1. TheProjetivePlane
2. ProjectiveSpaceandProjectiveVarieties
3. TheProjectiveAlgebra-GeometryDictionary
4. TheProjectiveClosureofanAffineVariety
5. ProjectiveEliminationTheory
6. TheGeometryofQuadricHypersuffaces
7. Bezout'sTheorem
9.TheDimensionofaVariety
1. TheVarietyofaMonomialIdea
2. heComplementofaMonomialIdeal
3. TheHilbertFunctionandtheDimensionofaVariety
4. ElementarycPropertiescofcDimension
5. DimensionandAlgebraicIndependence
6. DimensionandNonsingularity
7. TheTangentCone
AppendixA.SomeConceptscfromAlgebra
1. FieldsandRings
2. Groups
3. Determinants
AppendixB.Pseudocode
1. Inputs,Outputs,Variables,andConstants
2. AssignmentStatements
3. LoopingStructures
4. BranchingStructures
AppendixC.ComputerAlgebraSystems
1. AXIOM
2. Maple
3. Mathematica
4. REDUCE
5. OthercSystems
AppendixcD.cIndependentcProjects
1. GeneralcComments
2. SuggestedcProjects
References
Index
