您当前的位置:首页 > 复函数论中的经典论题(英文版) > 下载地址1
复函数论中的经典论题(英文版)
- 名 称:复函数论中的经典论题(英文版) - 下载地址1
- 类 别:数学书籍
- 下载地址:[下载地址1]
- 提 取 码:i6iw
- 浏览次数:3
发表评论
加入收藏夹
错误报告
目录| 新闻评论(共有 0 条评论) |
资料介绍
复函数论中的经典论题(英文版)
出版时间:2013年版
内容简介
In addition to the correction of typographical errors, the text has been materially changed in three places. The derivation of Stirling's formula in Chapter 2.4, now follows the method of Stieltjes in a more systematic way. The proof of Picard's little theorem in Chapter 10, 2, is carried out following an idea of H. Konig. Finally, in Chapter 11, 4, an inaccuracy has been corrected in the proof of Szego's theorem.
目录
Preface to the Second German Edition
Preface to the First German Edition
Acknowledgments
Advice to the reader
A Infinite Products and Partial Fraction Series
1 Infinite Products of Holomorphic Functions
1. Infinite Products
1. Infinite products of numbers
2. Infinite products of functions
2. Normal Convergence
1. Normal convergence
2. Normally convergent products of holomorphic functions
3. Logarithmic difi.erentiation
3. The Sine Product sin πz =πz ∏∞v=1(1-z2/v2)
1. Standard proof
2. Characterization of the sine by the duplication formula
3. Proof of Euler's formula using Lemma 2
4. Proof of the duplication formula for Euler's product, following Eisenstein
5. On the history of the sine product
4. Euler Partition Products
1. Partitions of natural numbers and Euler products
2. Pentagonal number theorem. Recursion formulas for p(n) and σ(n)
3. Series expansion of ∏∞v=1(1+ qvz) in powers of z
4. On the history of partitions and the pentagonal number theorem
5*. Jacobi's Product Representation of the SeriesJ(z,q):=∑∞v=-∞qv2zv
1. Jacobi's theorem
2. Discussion of Jacobi's theorem
3. On the history of Jacobi's identity
Bibliography
The Gamma Function
1. The Weierstrass Function △(z) = zeγz ∏v≥1(1+z/v)e-z/v
1. The auxiliary function
H(z):= z∏∞v(1+z/v)e-z/v
2. The entire function △(z):=eγzH(z)
2. The Gamma Function
1. Properties of the F-function
2. Historical notes
3. The logarithmic derivative
4. The uniqueness problem
5. Multiplication formulas
6. H(o)lder's theorem
7. The logarithm of the F-function
3. Euler's and Hankel's Integral Representations of Γ(z)
1. Convergence of Euler's integral
2. Euler's theorem
3. The equation
4. Hankel's loop integral
4. Stirling's Formula and Gudermann's Series
1. Stieltjes's definition of the function μ(z)
2. Stirling's formula
3. Growth of |Γ(x+iy)|for |y|→∞
4. Gudermann's series
5. Stirling's series
6. Delicate estimates for the remainder term
7. Binet's integral
8. Lindel(o)f's estimate
5. The Beta Function
1. Proof of Euler's identity
2. Classical proofs of Euler's identity
Bibliography
……
B Mapping Theory
C Selecta
Short Biographies
Symbol Index
Name Index
Subject Index
出版时间:2013年版
内容简介
In addition to the correction of typographical errors, the text has been materially changed in three places. The derivation of Stirling's formula in Chapter 2.4, now follows the method of Stieltjes in a more systematic way. The proof of Picard's little theorem in Chapter 10, 2, is carried out following an idea of H. Konig. Finally, in Chapter 11, 4, an inaccuracy has been corrected in the proof of Szego's theorem.
目录
Preface to the Second German Edition
Preface to the First German Edition
Acknowledgments
Advice to the reader
A Infinite Products and Partial Fraction Series
1 Infinite Products of Holomorphic Functions
1. Infinite Products
1. Infinite products of numbers
2. Infinite products of functions
2. Normal Convergence
1. Normal convergence
2. Normally convergent products of holomorphic functions
3. Logarithmic difi.erentiation
3. The Sine Product sin πz =πz ∏∞v=1(1-z2/v2)
1. Standard proof
2. Characterization of the sine by the duplication formula
3. Proof of Euler's formula using Lemma 2
4. Proof of the duplication formula for Euler's product, following Eisenstein
5. On the history of the sine product
4. Euler Partition Products
1. Partitions of natural numbers and Euler products
2. Pentagonal number theorem. Recursion formulas for p(n) and σ(n)
3. Series expansion of ∏∞v=1(1+ qvz) in powers of z
4. On the history of partitions and the pentagonal number theorem
5*. Jacobi's Product Representation of the SeriesJ(z,q):=∑∞v=-∞qv2zv
1. Jacobi's theorem
2. Discussion of Jacobi's theorem
3. On the history of Jacobi's identity
Bibliography
The Gamma Function
1. The Weierstrass Function △(z) = zeγz ∏v≥1(1+z/v)e-z/v
1. The auxiliary function
H(z):= z∏∞v(1+z/v)e-z/v
2. The entire function △(z):=eγzH(z)
2. The Gamma Function
1. Properties of the F-function
2. Historical notes
3. The logarithmic derivative
4. The uniqueness problem
5. Multiplication formulas
6. H(o)lder's theorem
7. The logarithm of the F-function
3. Euler's and Hankel's Integral Representations of Γ(z)
1. Convergence of Euler's integral
2. Euler's theorem
3. The equation
4. Hankel's loop integral
4. Stirling's Formula and Gudermann's Series
1. Stieltjes's definition of the function μ(z)
2. Stirling's formula
3. Growth of |Γ(x+iy)|for |y|→∞
4. Gudermann's series
5. Stirling's series
6. Delicate estimates for the remainder term
7. Binet's integral
8. Lindel(o)f's estimate
5. The Beta Function
1. Proof of Euler's identity
2. Classical proofs of Euler's identity
Bibliography
……
B Mapping Theory
C Selecta
Short Biographies
Symbol Index
Name Index
Subject Index
下一篇: Klein数学讲座(附季理真代译序)
上一篇: 多元微积分教程(英文 影印本)
相关推荐
- 数学建模方法与应用 侯进军,肖艳清,谭敏等主编 2012年版
- 21世纪统计学系列教材 应用回归分析 第4版 [何晓群,刘文卿 编著] 2015年版
- 和算中源:和算算法及其中算源流
- 格致方法 定量研究系列 分位数回归模型 [(美)郝令昕,(美)奈曼 著] 2012年版
- 常用数值算法及其MATLAB实现 [夏省祥,于正文 著] 2014年版
- 数学和数学家的故事 第9册 (美)李学数编著 2019年版
- 天才与算法:人脑与AI的数学思维 马库斯·杜·索托伊著 2020年版
- 走向数学丛书:复数、复函数及其应用 [张顺燕 著] 2011年版
- 数理统计与数据分析(原书第3版)
- 小学数学应用题 四年级 下 《小学数学应用题》编写组编 2015年版
