您当前的位置:首页 > 傅立叶级数和球面调和函数的几何应用 H.GROEMER 2000年版 > 下载地址1
傅立叶级数和球面调和函数的几何应用 H.GROEMER 2000年版
- 名 称:傅立叶级数和球面调和函数的几何应用 H.GROEMER 2000年版 - 下载地址1
- 类 别:数学书籍
- 下载地址:[下载地址1]
- 提 取 码:
- 浏览次数:3
发表评论
加入收藏夹
错误报告
目录| 新闻评论(共有 0 条评论) |
资料介绍
傅立叶级数和球面调和函数的几何应用
作者: H.GROEMER
出版时间:2000年版
内容简介
In 1901 Adolf Hurwitz published a short note showing that Fourier series can be used to prove the isoperimetric inequality for domains in the Euclidean plane,and in a subsequent article he showed how spherical harmonics can be utilized to prove an analogous inequality for three-dimensional convex bodies. A few years later Hermann Minkowski used spherical harmonics to prove an interesting characterization of (three-dimensional) convex bodies of constant width. The work of Hurwitz and Minkowski has convincingly shown that a study of this interplay of analysis and geometry, in particular of Fourier series and spherical harmonics on the one hand, and the theory of convex bodies on the other hand, can lead to interesting geometric results. Since then many articles have appeared that explored the possibilities of such methods.本书为英文版。
目录
Preface
1 Analytic Preparations
1.1 Inner Product, Norm, and Orthogonality of Functions
1.2 The Gradient and Beltrami Operator
1.3 Spherical Integration and Orthogonal Transformations
2 Geometric Preparations
2.1 Basic Features of Convex Sets
2.2 Support Functions
2.3 Metrics for Sets of Convex Bodies
2.4 Mixed Volumes and Mean Projection Measures
2.5 Inequalities
2.6 Difference Bodies, Projection Bodies, Steiner Point, and Centroid
3 Fourier Series and Spherical Harmonics
3.1 From Fourier Series to Spherical Harmonics
3.2 Orthogonality, Completeness, and Series Expansions
3.3 Legendre Polynomials
3.4 Some Integral Transformations and the Funk-Hecke Theorem
3.5 Zonal Harmonics and Associated Legendre Functions
3.6 Estimates and Uniform Convergence
4 Geometric Applications of Fourier Series
4.1 A Proof of Hurwitz of the Isoperimetric Inequality
4.2 The Fourier Expansion of the Support Function
4.3 The Isoperimetric and Related Inequalities
4.4 Wirtinger''s Inequality
4.5 Rotors and Tangential Polygons
4.6 Other Geometric Applications of Fourier Series
5 Geometric Applications of Spherical Harmonics
5.1 The Harmonic Expansion of the Support Function
5.2 Inequalities for Mean Projection Measures and Mixed Volumes
5.3 The Isoperimetric Inequality
5.4 Wirtinger''s Inequality for Functions on the Sphere
5.5 Projections of Convex Bodies
5.6 Intersections of Convex Bodies with Planes or Half-Spaces
5.7 Rotors in Polytopes
5.8 Other Geometric Applications of Spherical Harmonics
References
List of Symbols
Author Index
Subject Index
作者: H.GROEMER
出版时间:2000年版
内容简介
In 1901 Adolf Hurwitz published a short note showing that Fourier series can be used to prove the isoperimetric inequality for domains in the Euclidean plane,and in a subsequent article he showed how spherical harmonics can be utilized to prove an analogous inequality for three-dimensional convex bodies. A few years later Hermann Minkowski used spherical harmonics to prove an interesting characterization of (three-dimensional) convex bodies of constant width. The work of Hurwitz and Minkowski has convincingly shown that a study of this interplay of analysis and geometry, in particular of Fourier series and spherical harmonics on the one hand, and the theory of convex bodies on the other hand, can lead to interesting geometric results. Since then many articles have appeared that explored the possibilities of such methods.本书为英文版。
目录
Preface
1 Analytic Preparations
1.1 Inner Product, Norm, and Orthogonality of Functions
1.2 The Gradient and Beltrami Operator
1.3 Spherical Integration and Orthogonal Transformations
2 Geometric Preparations
2.1 Basic Features of Convex Sets
2.2 Support Functions
2.3 Metrics for Sets of Convex Bodies
2.4 Mixed Volumes and Mean Projection Measures
2.5 Inequalities
2.6 Difference Bodies, Projection Bodies, Steiner Point, and Centroid
3 Fourier Series and Spherical Harmonics
3.1 From Fourier Series to Spherical Harmonics
3.2 Orthogonality, Completeness, and Series Expansions
3.3 Legendre Polynomials
3.4 Some Integral Transformations and the Funk-Hecke Theorem
3.5 Zonal Harmonics and Associated Legendre Functions
3.6 Estimates and Uniform Convergence
4 Geometric Applications of Fourier Series
4.1 A Proof of Hurwitz of the Isoperimetric Inequality
4.2 The Fourier Expansion of the Support Function
4.3 The Isoperimetric and Related Inequalities
4.4 Wirtinger''s Inequality
4.5 Rotors and Tangential Polygons
4.6 Other Geometric Applications of Fourier Series
5 Geometric Applications of Spherical Harmonics
5.1 The Harmonic Expansion of the Support Function
5.2 Inequalities for Mean Projection Measures and Mixed Volumes
5.3 The Isoperimetric Inequality
5.4 Wirtinger''s Inequality for Functions on the Sphere
5.5 Projections of Convex Bodies
5.6 Intersections of Convex Bodies with Planes or Half-Spaces
5.7 Rotors in Polytopes
5.8 Other Geometric Applications of Spherical Harmonics
References
List of Symbols
Author Index
Subject Index
下一篇: 儿童魔方之旅 陈丹阳著 2017年版
上一篇: 代数数论讲义 Hecke 2000年版
相关推荐
- 少年数学实验 [张景中 著] 2016年版
- 21世纪控制论综述评论集 纪念控制论创立70周年 1948-2018
- 混沌与分形:科学的新前沿(第二版)
- 育才学案 高中数学 必修3 人教版 马瑞娟分册主编;杨静丛书主编 2016年版
- 格致方法 定量研究系列 空间回归模型 [(美)沃德,(美)格里蒂奇 著] 2012年版
- 乐学七中 高中数学 选修 2-1(二)、选修 2-3、选修 4-5 活页试卷 许勇,曹杨可,魏华策划;张世永,陈中根,何毅章主编
- 自然哲学之数学原理 牛顿著;卜可译 2018年版
- 数学第一口算应用题培优题卡 一年级 下 同步精炼版 唐知新著 2016年版
- 俄罗斯立体几何问题集
- 世界经典科普读本 几何原本 欧几里得著 李彩菊译 2017年版
